Tauberian Theorems and Slowly Varying Functions
نویسندگان
چکیده
منابع مشابه
Wiener Tauberian Theorems for Vector - Valued Functions
Different versions of Wiener’s Tauberian theorem are discussed for the generalized group algebra LI(G,A) (of integrable functions on a locally compact abelian group G taking values in a commutative semisimple regular Banach algebra A) using A-valued Fourier transforms. A weak form of Wiener’s Tauberian property is introduced and it is proved that LI(G,A) is weakly Tauberian if and only if A is....
متن کاملVery Slowly Varying Functions
A real-valued function f of a real variable is said to be (p-slowly varying ((p-s .v.) if limn_ . rp (x) [ f (x + a) f (x)] = 0 for each a. It is said to be uniformly 9-slowly varying (u . (P-s .v .) if limn-. . sup, e r rp(x) ; f (x-a) f (x)I =0 for every bounded interval I. It is supposed throughout that rp is positive and increasing . It is proved that if w increases rapidly enough, then eve...
متن کاملVery Slowly Varying Functions Ii
This paper is a sequel to both Ash, Erd1⁄2os and Rubel [AER], on very slowly varying functions, and [BOst1], on foundations of regular variation. We show that generalizations of the Ash-Erd1⁄2os-Rubel approach imposing growth restrictions on the function h, rather than regularity conditions such as measurability or the Baire property lead naturally to the main result of regular variation, th...
متن کاملTauberian theorems for sum sets
Introduction. The sums formed from the set of non-negative powers of 2 are just the non-negative integers. It is easy to obtain “abelian” results to the effect that if a set is distributed like the powers of 2, then the sum set will be distributed like Dhe non-negative integers. We will be concerned here with converse, or “Tauberian” results. The main theme of this paper is t’he following quest...
متن کاملTauberian Theorems for Summability Transforms
we then write sn → s(A), where A is the A method of summability. Appropriate choices of A= [an,k] for n,k ≥ 0 give the classical methods [2]. In this paper, we present various summability analogs of the strong law of large numbers (SLLN) and their rates of convergence in an unified setting, beyond the class of random-walk methods. A convolution summability method introduced in the next section ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1968
ISSN: 0002-9947
DOI: 10.2307/1994983